Sub-lamellar microcracking and roles of canaliculi in human cortical bone.
نویسندگان
چکیده
Bone is a tough biological material. It is generally accepted that bone's toughness arises from its unique hierarchical structure, which in turn facilitates distributed microcracking prior to fracture. Yet, there has been limited progress on the detailed roles of the structural elements in the microcracking process. The present study examines the structure-microcracking relations at the lamellar and sub-lamellar levels of human cortical bone subjected to compressive loading. Laser scanning confocal microscopy revealed a clear influence of the local structure and porosity of the Haversian systems' lamellae on microcrack development. In particular, crack initiation and growth under transverse compression were associated with stress concentration at canaliculi. Later stages of microcracking showed extensive sub-lamellar cracks forming cross-hatched patterns and regularly spaced 0.5-1.7 μm apart. The density, size and regularity of the crack patterns suggest enhanced inelastic deformation capacity through cracking control at the level of mineralized collagen fibril bundles. The present study thus improves the current understanding of the nature of inelastic deformation and microcracking in bone and further suggests that bone's resistance to fracture is achieved through microcrack control at multiple length scales.
منابع مشابه
Development of bone canaliculi during bone repair.
We recently found that silver impregnation staining with protargol (silver protein), that is, a modified Bodian method, is useful for histologically identifying the details of bone canaliculi structure, using thin sections of decalcified bone tissues. With this staining method, we conducted the present study to assess the development of bone canaliculi during the process of intramembranous ossi...
متن کاملComparative study of bone and lamellar bone formation in Peripheral Giant Cell Granuloma and Peripheral Ossifying Fibroma
Comparative study of bone and lamellar bone formation in Peripheral Giant Cell Granuloma and Peripheral Ossifying Fibroma Dr. SH. Ghasemi Moridani* - Dr. H. Mahmoodi Chenari* *-Assistant Professor of Oral and Maxillofacial Pathology Dept.-Faculty of Dentistry-Guilan University of Medical Sciences. **- Dentist. Background and Aim: Peripheral Giant Cell Granuloma (PGCG) and peripheral ossifying f...
متن کاملMechanistic aspects of the fracture toughness of elk antler bone.
Bone is an adaptive material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure-function relationships. Here, we examine the fracture toughness of compact bone of elk antler, which is an extremely fast-growing primary bone d...
متن کاملOsteocyte Lacunae and Canaliculi in Cortical and Trabecular Bones
INTRODUCTION: Osteocytes, the most abundant cells in mature bone, are strategically placed to regulate the homeostasis and mechanical adaptation of bone [1]. Interstitial fluid flow and solute transport have been hypothesized to be involved in osteocyte metabolism and mechanosensition [2]. Recent experimental and theoretical studies have shown that the anatomical features of the lacunar-canalic...
متن کاملOrientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue.
Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2012